ДОМ БЕЗ ОТОПЛЕНИЯ - СЛОЖНАЯ ЗАДАЧА - НО ВОЗМОЖНА!!

Главная » Аккумулирование энергии солнца

Аккумулирование энергии солнца

Аккумулирование энергии солнца и тепла летнего сезона для отопления зимой – это весьма заманчивая идея.
Реализация такого проекта могла бы привести в России к колоссальным положительным энергетическим и экономическим последствиям, особенно в малоэтажном строительстве часный сектор.

Как нигде у нас холодная зима, аккумулирование энергии солнца и тепла летнего сезона при отоплении сулит огромную выгоду, для большинства стран мира потребление энергоресурсов на отопление не столь жизненно необходимо.
Автономные системы отопления дома, автономное отопление частного дома.

Какой тепловой аккумулятор летней тепловой солнечной энергии нужен для отопления загородного дома зимой.
Нами разработан рекуператор – аккумулятор тепла, или теплообменник с рекуперацией и накоплением тепла.

Водяной аккумулятор тепла солнечной энергии, солнечный энергоаккумулятор запаа тепла Удобным в эксплуатации и примитивным в изготовлении, дешевым, чтобы появилась экономическая заинтересованность замены энергии газа, дров, в том числе и угля, как самого трудоемкого в добыче и стоящей здоровья и жизни шахтеров.

 Самое заманчивое для аккумулирования тепловой энергии солнца во внушительных количествах по теплоемкости является вода, но не везде доступна и в зависимости от технологии может быть дороговато.
Вода, конечно, хорошо прогревается инфракрасным солнечным излучением, тепло легко подать к жилью по трубам, вода большинству общедоступна.

Но самое дешевое и в тоже время доступное повсеместно любому смертному для аккумулирования тепла энергии солнца  это земля, подземные каналы как искусственного, так и естественного происхождения.

Пронизывая грунты трубами с водой, легко организовать теплообмен с потребителем. Почва, грунт по многим физическим показателям, да и по химическому и агробиологическому, составу различны. Удельная теплоемкость воды в несколько раза больше чем у грунта, но доступность для большинства людей делают его очень привлекательным для изготовления аккумулирования тепла солнца, технологичность его работ сохранность тепла больших объемов.

Динамика изменения температуры при рекуперации Такой тепловой аккумулятор из большой массы грунта с глубиной канала до 3 метров с наибольшей температурой, доведенной до 40°С. это доступный энергоаккумулятор тепла!Реверсивный теплообменник, рекуператор, аккумулятор тепла в одном лице

Многим известен метод сезонного аккумулирования холода в погребах и грунте, под опилками и соломой для летнего сезона на загородных дачах, где нет электричества. На нижней границе вечной мерзлоты устойчивый слой с температурой до +10°С. многие столетия, но многие думают, что тепло солнца уйдет в недра земли.

А населению морочат голову газификацией страны, которая делает людей заложниками и зависимыми, полная газификация бомба замедленного действия особенно в суровых условиях России, при малейшем катаклизме, только ради огромной прибыли для кучки людей газового бизнеса.

Россия на своих огромных просторах имеет колоссальные запасы грунтовых и межпластовых артезианских вод.
Температура воды в скважинах, родниках, колебаться от +4°С, до +6°С. в течение всего года, температура может, изменяется, повышаясь к осени и в начале зимы и понижаться марту месяцу и до начала лета.

Вода в артезианских пластах находится под непрерывным давлением, что позволяет ей в отдельных участках струиться на поверхности в виде восходящих потоков родников и ключей, из которых можно извлекать тепло.

К настоящему времени в стране пробурено десятки тысяч скважин глубиной от 5 до 300 м, основной водоносный пласт лежит на глубине приблизительно от 50 метров до 80.
При выкачивании этой воды на поверхность земли, она смогла бы прикрыть всю территорию республики метровым слоем.
Подземные воды обладают огромным запасом тепловой энергии, но дорогая технология изъятия тепла.

Технология строительства рекуперацеонного канала Тепловой потенциал недр планеты  это тепловой реактор, который может в большинстве заменить атом, энергию нефти газа - транспортные катастрофы, взрывы, пожары, делая заложниками население газификацией, ограбление простых людей повышающимися во всех странах тарифами на энергоресурсы, загрязнение атмосферы и меркантильными киотскими протоколами.

Огромное количество тепловой энергии у каждого обитателя планеты под домом, огородом, на крыше дома, не выключат, за несвоевременную оплату и в большинстве не зависит от времени года, широты.

Использование тепла недр земли для отопления с помощью воздушной вентиляции известна сотни лет, а не получает распространение лишь из-за жадности бизнеса и страха независимости людей, все что может сделать народ не зависимым, возможность пременения независимо от страны и континента тщательно скрывается и не пропагандируется.

 Тепловой баланс, режим Земли, температура поверхностного слоя Земли.
Тепловой баланс, режим земли зависит от радиации, тепловой энергии солнца и выделяющейся при химических реакциях, радиоактивном распаде, при подземных тектонических движениях.

В верхней части выделяют 3 температурные области земной коры.
Это область распространения сезонных колебаний верхняя часть земной коры, область распространения постоянной температуры на определенный слой и область распространения постепенного повышения температуры в зависимости от глубины.
Изменение температуры в верхней области земли определяется климатом края.

По пределу углубления в недра земли, влияние атмосферных суточных и сезонных температур  стабилизируется, и начинается зона постоянной температуры на глубине около 12 метров, равная среднегодовой температуры в данном крае. Если в данном районе средне годовая температура опускается ниже 0°С, то образуется вечная мерзлота.

 Солнечные коллекторы южного фасада дома Температура и годовой баланс тепла поверхностного слоя планеты меняется по временам года и зависит от поступающей тепловой энергии Солнца. На глубине влияние солнечного тепла ниже этого пояса не воздействует. Это область постоянной температуры, где круглогодично сохраняется постоянная температура.

В высоких широтах постоянная температура находится на глубине между 20-30 метров.
В средних широтах постоянная температура находится на глубине между 15-20 метров.
Для Москвы, глубина постоянной температуры находится на глубине 20 м при температур (4,2 °С).
В течение века на глубине 28 м в Париже отмечается температура чуть выше 11°С.
Глубже этого пояса, к центру Земли, температура постепенно повышается: в среднем на на 1 °С каждые 33 м.

Средняя годовая температура воздуха в Буздяке составляет почти 3 градуса тепла, в более увлажненных районах, северо-восточной части и горнолесных районах, где годовое количество осадков превышает 600 мм, средняя годовая температура атмосферы менее 1 градуса.

Почва состоит из минералов, воды и воздуха заполняющего промежутки между твердыми частичками. Если взять 1 м3 почвы и разделить ее на твердые, жидкие и газообразные составные части, то объемная теплоемкость м3 почвы складываться из теплоемкостей минеральной части, воды и воздуха.

Вода обладает уникальной удельной теплоемкостью в сравнении 4200 Дж/(кг*К), для расчета объемной теплоемкости нужно помножить на плотность воды 1000 кг/м3, значит, объемная теплоемкость воды равна 4200*1000=4200000 Дж/(м3*К)=4,2 кДж/(л*К). Удельная теплоемкость воздуха 1000 Дж/(кг*К), плотность воздуха 1,29 кг/м3, объемная теплоемкость воздуха равна 1000*1,29=1200 Дж/(м3*К)=0,0012 кДж/(л*К). Удельная теплоемкость твердой части в несколько раз ниже.

К сожалению, вряд ли где можно найти удельную теплоемкость почвы.
Удельная теплоемкость прочих минералов, которые в составе почвы, отличается ничтожно. Плотность песка 1500 кг/м3, кирпича (глины) 1600 кг/м3, Тогда объемная теплоемкость песка равна 880*1500=1320000 Дж/(м^3*К)=1,32 кДж/(л*К), а глины 880*1600= 1408000 Дж/(м^3*К)=1,41 кДж/(л*К). Итак, имеем, объемные теплоемкости песка 1,32 кДж/(л*К), глины 1,41 кДж/(л*К), воды 4,2 кДж/(л*К), воздуха 0,0012 кДж/(л*К). Как видим, объемные теплоемкости песка и глины различаются только на 7 %, в то время, как объемная теплоемкость воды почти в 3 раза больше удельной теплоемкости твердой части, а воздуха в 1100 раз меньше. Значит изменение содержания влаги и особенно воздуха значительно сильнее сказывается на объемной теплоемкости почвы, чем изменение состава твердой части.

Теплоёмкость.
Количество тепла расчет в джоулях, необходимое для нагревания 1 г абсолютно сухой почвы на 1˚С, называют удельной теплоёмкостью массы, а количество тепла, необходимое для нагревания 1 см3 сухой почвы на 1˚С, называют объёмной удельной теплоёмкостью.

Объёмная теплоёмкость почвы естественного сложения зависит от теплоёмкости твёрдой фазы почвы, влажности почвы и содержания в ней воздуха.

При правильной ориентации дома на участке местности, в нашем случае проекта, полу вальмовая крыша, общей площадью 200 м.2 может дать, только за июнь месяц, 196-373 часов солнечного сияния, июль 152-357 август 164-331 итого возьмем в среднем 250 часов.

При солнечном сиянии 250 часов * 3 месяца = 750 часов солнечного сияния по 300 ват на м2 крыши тепловой и солнечной энергии, крыша особой конструкции, покрытый черным пофнастилом с высокими рёбрами жесткости получим 45000 КВтч тепловой мощности.

Это колоссальное количество тепловой мощности аккумулировать в подземных каналах рекуперационной системы отопления, запасая, таким образом, на зиму тепловую энергию солнца и воздуха. Даже при огромной ошибке в расчетах запасенное тепло хватит на зиму. По нашему проекту есть еще солнечный воздушный коллектор с подземной системой вентиляции, который дополнительно даст 30 м2 * 750 часов *0,5 КВтч на м2

получится 11250 КВтч, итого 56250 КВтч. Даже при грубейших расчетах не кто не может опровергнуть возможность доведения температуры грунта до 25 ˚С, под домом и в рекуперационном канале. У нас для ответа оппонентам осталось еще 2 варианта, о которых я промолчу. Наши разработки, дают гарантию, возможности отопления и горячего водоснабжения, большинству территорий России обходится без энергоресурсов.
Но без теплоизоляции для суровых условий России так и будем выкидывать деньги в трубу.

Глинистый грунт, песчаный грунт, объемная теплоемкость от 0.488 до 0.688 Сv, кал/(см³*°С), среднее значение 0,588 кал/(см³*°С. 
В м3 грунта = 1000000 см³ * 0,588 кал = 588000 кал тепла / 1000 = 588 Ккал тепла на 1°С. при прогреве до 25°С = 14700 Ккал/ на м3 грунта.
Если в каналах воздушной системы отопления имеется 360 м3 грунта и под домом и вокруг дома 150 м3 грунта итого 500 м3 грунтового аккумулятора тепла. 
14700 Ккал/ на м3 грунта * 500 м3 = 7350000 Ккал тепла может аккумулировать грунт или 7350000 Ккал/ 860 Ккал = 8546 Квт ч тепловой мощности, часть которого перекроет потребности Энергопассивного дома в отоплении при энергоэффективности потребления 20,4 Квт ч тепловой мощности на м2 за сезон отоплении 213 дней при средней температуре -3,6°С.
На дом площадью 100 м2 за сезон отопления необходимо 2040 Квт ч тепловой мощности.
Такой грунтовый аккумулятор тепла, получается, не способен даже полностью аккумулировать поступившее солнечное тепло, иначе грунт должен прогреется неимоверно. В Канаде грунт нагревают до 40 °С.

Теплофизические свойства грунта при различном содержании пор и влажности

Грунт

Поры,

см³/с³

Влажность объемная, см³/см³

Теплопроводность λ,

мкал/(см*с*°С)

Теплоемкость объемная Сv,

кал/(см³*°С)

Температура проводимость k, см²/с

Песчаный грунт

0.4

0.0

0.7

0.288

0.0024

0.4

0.2

4.2

0.488

0.0086

0.4

0.4

5.2

0.688

0.0076

Глинистый грунт

0.4

0.0

0.6

0.288

0.0021

0.4

0.2

2.8

0.488

0.0057

0.4

0.4

3.8

0.688

0.0055

Торф

0.8

0.0

0.14

0.12

0.0012

0.8

0.4

0.7

0.52

0.0013

0.8

0.8

1.2

0.92

0.0013

Максимумы и минимумы суточных и годовых тепловых колебаний с увеличением глубины запаздывают, а амплитуды уменьшаются. Это зависимость температура проводимость грунта и расходом тепла на прогревание.

Для отбора низко потенциального тепла грунта используются U-образные трубопроводы (геотермические зонды), опущенные в специально пробуренные скважины глубиной 40-100 метров. В зависимости от состава грунта и наличия зон фильтрации грунтовых вод, удельный теплосъем с одного погонного метра грунтового зонда составляет 20-100 Вт/м. Количество скважин и их глубина зависят от требуемой мощности теплового насоса.

http://www.insolar.ru/lib_10.php"Энергоэффективная сельская школа в Ярославской области"

http://www.insolar.ru/lib_21.php Моделирование режимов работы рекуператора «сбросного» тепла вытяжного воздуха

Комментарии

 ВСЕ БЕСПЛАТНО КРОМЕ МОЗГОВ

 Соломенные матрасы, маты, утеплитель

ВИДЕО РАБОТЫ ОБОРУДОВАНИЯ

  СОЛОМА в СТРОИТЕЛЬСТВЕ
В селе Таптыково
Рес. Башкортостан построен энергоэффективный дом из клееного бруса с утеплителем, построенный инженером Альфредом Файзуллиным.
Это первый в республике Башкортостан дом, соответствующий «Зеленым стандартам».

Дом нового поколения: горячая вода от солнца, а экономия на отоплении за счет утепления.
Несмотря на экономичность, дом сочетает в себе энергоэффективность, экологичность и современный стиль.

Утром солнце освещает весь дом с южной стороны, а вечером - с западной. Расположение окон здесь продумано до мелочей. Пятикамерные окна - тоже часть энергосберегающей технологии.
Стекла изготовлены с применением серебра, которое позволяет отражать тепло.

Особенностью такого дома является отсутствие необходимости отопления традиционными методами и малое энергопотребление.
Здесь используются источники альтернативной энергии – солнечный коллектор и тепловой насос.

Применение системы приточно-вытяжной вентиляции с рекуперацией тепла создает благоприятный микроклимат в помещении. В доме использованы окна и двери с высоким тепловым сопротивлением. Технология сборки «Сити-угол» обеспечивает отсутствие «мостиков холода» по всему периметру дома, благодаря сплошной прослойке утеплителя. Все это исключает большие потери тепла и существенно снижает затраты на отопление (в два-три раза по сравнению с газовым отоплением). Стоимость такого дома «под ключ» варьируется от 30 тысяч рублей за один квадратный метр в зависимости от площади дома, его комплектации, отделочных материалов.

«Это очень интересный, современный и своевременный проект, технологии завтрашнего дня.
Этот механизм - лишь часть энергоэффективного частного дома в Таптыково.
Хозяин этого уникального строения и его изобретатель. Он рассказывает, что при строительстве «зеленого дома» использовался пассивный клеёный брус, который позволяет удерживать тепло. Материал, из которого он изготавливается, теперь производит и Учалинское предприятие.

Применение теплового насоса вместо электрического котла. Он эффективно использует тепло окружающей среды для отопления и горячего водоснабжения дома и позволяет экономить потребление энергии до 29 раз.
В жаркие дни такая технология служит для охлаждения помещений.

Таких домов в России пока единицы.
При его проектировании Альфред Файзуллин использовал японские и немецкие технологии.
Он отмечает, что при эксплуатации и утилизации дома никакой нагрузки на природу строение не окажет.
Умный частный дом в дальнейшем планируют совершенствовать.
Проектировщики хотят использовать гидроаккумулятор, а также создать аккумулятор тепла.
Температура воды в емкости объемом 300 м³ даже в пасмурную погоду не падает ниже 40 градусов
В качестве источника тепловой энергии инженер приобрел тепловой насос фирмы Viessmann, мощностью 9,7 кВт.
За тепловой насос пришлось заплатить 424000 рублей.
Вертикальные зонды были размещены в двух скважинах, глубиной по 63 метра каждая.
Бурение обошлось в 1600 рублей за погонный метр
Сразу оговоримся: Альфред Файзуллин строил дом для себя и не скупился на технологии, выбирая самое лучшее. В итоге стоимость квадратного метра «под ключ» составила 45000 рублей. Общая площадь дома 180 м2.

Пассивный дом должен потреблять не более 10% от традиционного, насос мощностью 9,7 кВт. многовато для такого дома.
Норма пассивного дома 15 кВт. на м2 международные требование для сурового климата за сезон отопления.
15 кВт/213 дней * 180 м2= 12,7кВт/м2 норма на день или 380 кВт на 30 дней.

Как построить самому, недорогой теплый дом, своими руками, у нас есть ответ, вы по адресу, узнай подробности, как самому сделать солнечное отопление.

Умный не тот, у кого больше возможностей, а тот, у кого много идей в голове.

Счастлив не тот человек, у кого полно денег, а тот, у кого больше мудрости.

Самый богатый не тот человек, у кого больше денег, а тот, кому меньше требуется.

Умный не тот, кто зарабатывает на жизнь, а мудрый на кого работает умный.

Век бизнеса сегодня, сильный отбирает у слабых, умный отбирает у сильных.

Счастлив человек не тогда, когда больше добра, а кому хватает и меньшего.

Деньги правят миром, чем больше их, тем больше прав.

Есть идея, нет средства на ее реализацию, нужны мудрые решения для умных мыслей.

Успешен не тот, у кого больше денег, а тот, у кого больше притворенных в жизнь идей.

Знать можно, но уметь сложнее, между ними большая пропасть.